Thermal Strain Sensing of Concrete Piles Using Brillouin Optical Time Domain Reflectometry

H. Mohamad 1, K. Soga 2, and B. Amatya 3

1 UTM Construction Research Centre, Faculty of Civil Engineering, Univ. Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

2 Department of Engineering, Univ. of Cambridge, Trumpington Street, CB21PZ, Cambridge, UK

3 Halcrow Group Limited, Elms House, 43 Brook Green, Hammersmith, London, W6 7BY, UK

Geotechnical Testing Journal, Vol. 37, No. 2, 2014, pp. 333–346,

doi:10.1520/GTJ20120176

ABSTRACT

Recent advancement in distributed fiber-optic sensing offers new possibilities for performance monitoring in the field of geotechnical and civil engineering. Brillouin optical time-domain reflectometry (BOTDR) is a commercially available technology that allows distributed strain measurements in the microstrain range along the full length of an optical fiber. By integrating a single fiber-optic cable into soil or a structure, an unprecedented amount of reasonably accurate (630 le), spatially resolved data could be obtained. Since the BOTDR data is influenced by both strain and temperature, it is important that methods to separate the two effects are fully understood. This paper describes the BOTDR temperature compensation method by implementing appropriate thermal expansion coefficients of optical cables and structures to the raw data. In the laboratory study, validation of the instrumentation technique was conducted in a concrete beam by embedding two types of optical cables consisting of tight-buffered and loose-tubed coatings to measure thermal strains response during concrete curing. Temperature readings inferred from optical fibers were found to be in accordance to the thermocouples. A field study of axially loaded concrete pile subjected to cooling and heating cycle is presented. Measurements in the test pile and adjacent borehole indicate similar strain profiles and temperature changes between BOTDR and conventional instrumentation such as vibrating wire strain gauges and thermistors. General steps to derive the temperature compensated strain profiles observed in the thermal pile as a result of cooling and heating is presented. The data enables load-transfer profiles to be interpreted and used as framework to understand pile response to temperature changes.

Keywords

piles, fiber optics, thermal strains, temperature compensation, BOTDR, distributed strain

References

Amatya, B. L., Soga, K., Bennett, P. J., Uchimura, T., Ball, P., and Lung, R., 2008, “Installation of Optical Fibre Strain Sensors on Soil Nails Used for Stabilising Steep Highway Cut Slope,” Proceedings of the 1st ISSMGE International Conference on Transportation Geotechnics, Nottingham, UK, August 25–27, pp. 277–282.

Amatya, B. L., Soga, K., Bourne-Webb, P. J., Amis, T., and Laloui, L., 2012, “Thermo-Mechanical Behavior of Energy Piles,” Geotechnique, Vol. 62, No. 6, pp. 503–519.

Ansari, F. and Libo, Y., 1998, “Mechanics of Bond and Interface Shear Transfer in Optical Fiber Sensors,” J. Eng. Mech., Vol. 124, No. 4, pp. 385–394.

AQ8603, 2001, “Optical Fiber Strain Analyzer Instruction Manual,” AS-62577 Rev. 1.0, Ando Electric Co., Ltd., Tokyo, Japan.

Bao, X., DeMerchant, M., Brown, A., and Bremner, T., 2001, “Tensile and Compressive Strain Measurement in the Lab and Field With the Distributed Brillouin Scattering Sensor,” J. Lightwave Technol., Vol. 19, No. 11, pp. 1698–1704.

Bao, X., Webb, D. J., and Jackson, D. A., 1994, “Combined Distributed Temperature and Strain Sensor Based on Brillouin Loss in an Optical Fibre,” Opt. Lett., Vol. 19, pp. 141–143.

Bennett, P. J., Klar, A., Vorster, T. E. B., Choy, C. K., Mohamad, H., Soga, K., Mair, R. J., Tester, P. D., and Fernie, R., 2006, “Distributed Optical Fibre Strains Sensing in Piles. Reuse of Foundation for Urban Sites,” Proceedings of International Conference, A. D. Butcher, J. J. M. Powell, and H. D. Skinner, Eds., HIS Press, Watford, pp. 71–78.

Bourne-Webb, P. J., Amatya, B., Soga, K., Amis, T., Davidson, C., and Payne, P., 2009, “Energy Pile Test at Lambeth College, London: Geotechnical and Thermodynamic Aspects of Pile Response to Heat Cycles,” Geotechnique, Vol. 59, No. 3, pp. 237–248.

Brown, K., Brown, A. W., Colpitts, B. G., and Bremner, T. W., 2008, “Analysis of Brillouin Scattering Based Fiber Optic Sensor Bonding Effects,” J. Intell. Mater. Syst. Struct., Vol. 19, pp. 93–99.

Browne, R. D., 1972, “Thermal Movement in Concrete,” Concrete, Vol. 6, pp. 51–53.

Giallorenzi, T. G., Bucaro, J. A., Dandridge, A., Jr., Sigel, G. H., Cole, J. H., Rashleigh, S. C., and Priest, R. G., 1982, “Optical Fiber Sensor Technology,” IEEE Trans. Microwave Theory Tech., Vol. 30, No. 4, pp. 472–511.

Henault, J. M., Moreau, G., Blairon, S., Salin, J., Courivaud, J. R., Taillade, F., Merliot, E., Dubois, J. P., Bertrand, J., Buschaert, S., Mayer, S., and Delepine-Lesoille, S., 2010, “Truly Distributed Optical Fiber Sensors for Structural Health Monitoring: From the Telecommunication Optical Fiber Drawling Tower to Water Leakage Detection in Dikes and Concrete Structure Strain Monitoring,” Adv. Civ. Eng., Vol. 2010, pp. 1–13.

Hoepffner, R., 2008, “Distributed Fiber Optic Strain Sensing in Hydraulic Concrete and Earth Structures Measuring Theory and Field Investigations on Dams and Landslides,” Reports of the Department and the Laboratory of Hydraulic and Water, Technische Universita¨t Mu¨nchen, Meissner Druck GmbH, Oberaudorf, Germany.

Horiguchi, T., Shimizu, K., Kurashima, T., Tateda, M., and Koyamada, Y., 1995, “Development of a Distributed Sensing Technique Using Brillouin Scattering,” J. Lightwave Technol., Vol. 13, No. 7, pp. 1296–1302.

Horikawa, M., Komiyama, M., Hirata, K., and Uchiyama, H., 2004, “Measuring Instruments for Optical Fiber Sensing,” Sensing Issues in Civil Structural Health Monitoring, F. Ansari, Ed., Springer, New York, pp. 393–402.

Inaudi, D. and Glisic´, B., 2007, “Distributed Fibre-Optic Sensing for Long-Range Monitoring of Pipelines,” Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-3), Vancouver, Canada, Nov 13–16.

Inaudi, D. and Glisic´, B., 2008, “Overview of Fibre Optic Sensing Applications to Structural Health Monitoring,” Proceedings of the 13th FIG Symposium on Deformation Measurement and Analysis and 4th IAG Sysmposium on Geodesy for Geotechnical and Structural Engineering, LNEC, Lisbon, May 12–15.

Iten, M. and Puzrin, A. M., 2010, “Monitoring of Stress Distribution Along a Ground Anchor Using BOTDA,” Proc. SPIE,

Vol. 7647, 76472J.

Kada, H., Lachemi, M., Petrov, N., Bonneau, O., and Aitcin, P.-C., 2002, “Determination of the Coefficient of Thermal Expansion of High Performance Concrete from Initial Setting,” Mater. Struct., Vol. 35, pp. 35–41.

Klar, A., Bennett, P. J., Soga, K., Mair, R. J., Tester, P., Fernie, R., St. John, H. D., and Torp-Peterson, G., 2006, “Distributed Strain Measurement for Pile Foundations,” Proc. Inst. Civ. Eng., Geotech. Eng., Vol. 159, pp. 135–144. 

Kurashima, T., Hogari, K., Matsuhashi, S., Horiguchi, T., Koyamada, Y., Wakui, Y., and Hirano, H., 1994. “Measurement of Distributed Strain in Frozen Cable and Its Potential for use in Predicting Cable Failure,” Proceedings of International Wire and Cable Symposium, Atlanta, GA, Nov 14–17, pp. 593–600.

Kurashima, T., Horiguchi, T., and Tateda, M., 1990, “Thermal Effects on the Brillouin Frequency Shift in Jacketed Optical Silica Fibres,” Appl. Opt., Vol. 29, pp. 2219–2222.

Leigh, J. R., 1987, Temperature Measurement and Control, IEEE Control Engineering Series 33, Peter Peregrinus, London.

Lin, S. B., Tsay, S. Y., Speckhard, T. A., Hwang, K. K. S., Jezerc, J. J., and Cooper, S. L., 1984, “Properties of UV-cured Polyurethane Acrylates: Effect of Polyol Type and Molecular Weight,” Chem. Eng. Commun., Vol. 30, Nos. 3–5, pp. 251–273.

Maughan, S. M., Kee, H. H., and Newson, T. P., 2001, “Simultaneous Distributed Fibre Temperature and Strain Sensor Using Microwave Coherent Detection of Spontaneous Brillouin Backscatter,” Meas. Sci. Technol., Vol. 12, pp. 834–842.

Mohamad, H., 2008, “Distributed Optical Fibre Strain Sensing of Geotechnical Structures,” Ph.D. thesis, University of Cambridge, UK.

Mohamad, H., 2012, “Temperature and Strain Sensing Techniques Using Brillouin Optical Time Domain Reflectometry,” Proc. SPIE, Vol. 8346, pp. 1–13.

Mohamad, H., Bennett, P. J., Soga, K., Mair, R. J., and Bowers, K., 2010, “Behaviour of an Old Mansonry Tunnel Due to Tunnelling Induced Ground Settlement,” Geotechnique, Vol. 60, No. 12, pp. 927–938.

Mohamad, H., Soga, K., Bennett, P. J., Mair, R. J., and Lim, C. S., 2012, “Monitoring Twin Tunnel Interactions Using Distributed Optical Fiber Strain Measurements,” J. Geotech. Geoenviron. Eng., Vol. 138, No. 8, pp. 957–967.

Mohamad, H., Soga, K., Pellew, A., and Bennett, P. J., 2011, “Performance Monitoring of a Secant Piled Wall Using Distributed Fiber Optic Strain Sensing,” J. Geotech. Geoenviron. Eng., Vol. 137, No. 12, pp. 1236–1243.

Murayama, H., Kageyama, K., Naruse, H., Shimada, A., and Uzawa, K., 2003, “Application of Fiber-Optic Distributed Sensors to Health Monitoring for Full-Scale Composite Structures,” J. Intell. Mater. Syst. Struct., Vol. 14, pp. 3–13.

Ohno, H., Naruse, H., Kurashima, T., Nobiki, A., Uchiyama, Y., and Kusakabe, Y., 2002, “Application of Brillouin Scattering-Based Distributed Optical Fiber Strain Sensor to Actual Concrete Piles,” IEICE Trans. Elecrtron. E, Vol. 85, pp. 945–951.

Oka, K., Ohno, H., Kurashima, T., Matsumoto, M., Kumagai, H., Mita, A., and Sekitama, K., 1999, “Fiber Optic Distributed Sensor for Structural Monitoring,” Proceedings of the 2nd International Workshop on Structural Health Monitoring, Stanford, CA, Sept 8–10, pp. 672–679.

Sellevold, E. J. and Bjøntegaard, O., 2006, “Coefficient of Thermal Expansion of Cement Paste and Concrete: Mechanisms of Moisture Interaction,” Mater. Struct., Vol. 39, pp. 809–815.

Soto, M. A., Sahu, P. K., Faralli, S., Sacchi, G., Bolognini, G., Di Pasquale, F., Nebendahl, B., and Rueck, C., 2007, “High Performance and Highly Reliable Raman-Based Distributed Temperature Sensors Based on Correlation-Coded OTDR and Multimode Graded-Index Fibers,” Proc. SPIE, Vol. 6619, 66193B.

Thevenaz, L., Nikles, M., Fellay, A., Facchini, M., and Robert, P. A., 1998, “Applications of Distributed Brillouin Fiber Sensing,” Proceedings of the International Conference on Applied Optical Metrology, Vol. 3407, K. Pramod Rastogi and F. Gyimesi, Eds., SPIE, Bellingham, WA, pp. 374–381.

Vorster, T. E. B., Mair, R. J., Soga, K., Klar, A., and Bennett, P. J., 2006, “Using BOTDR Fibre Optic Sensors to Monitor Pipeline Behaviour During Tunnelling,” Proceeding of the Third European Workshop on Structural Health Monitoring, Granada, Spain, July 5–7, pp. 930–937.

Yablon, A. D., 2005, Optical Fiber Fusion Splicing, Springer, Berlin. 

Yasue, N., Naruse, H., Masuda, J.-I., Kino, H., Nakamura, T., and Yamaura, T., 2000, “Concrete Pipe Strain Measurement Using Optical Fiber Sensor,” IEICE Trans. Electron. Vol. E83-C, pp. 468–474.